SARS-CoV-2 and Schools

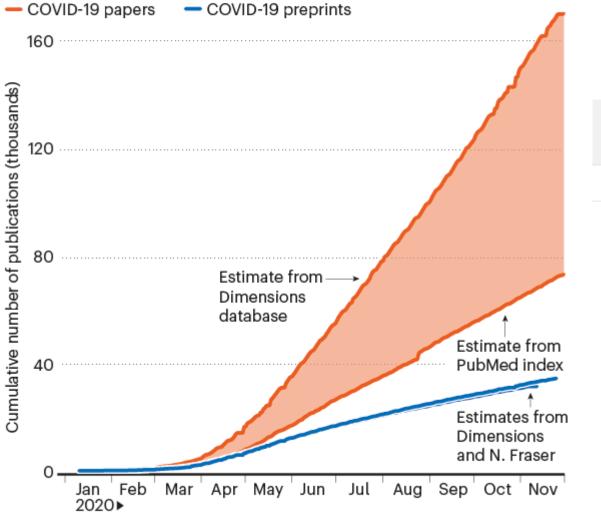
David Goldfarb

Land Acknowledgement

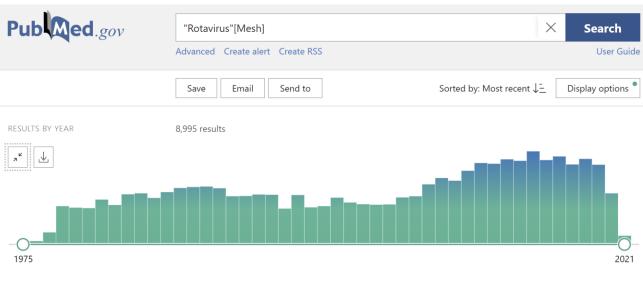
 Fortunate to give this presentation from the the unceded territories of the x^wməθk^wəýəm (Musqueam), Skwxwú7mesh (Squamish), and Selílwitulh (Tsleil-Waututh) Nations

- Relationships with commercial interests:
 - -Nothing to disclose
- Research funding from the Public Health Agency of Canada, CIHR, Grand Challenges Canada, CDC Foundation, IDRC, ArcticNet, GenePOC, Meridian and investigator initiated grants from bioMerieux
- (some slides provided by Dr. Alexandra Choi)

Outline


- Kids and COVID-19 in general
- COVID-19 and schools
- Situation in BC
- Q & A

Keeping up with COVID-19 literature

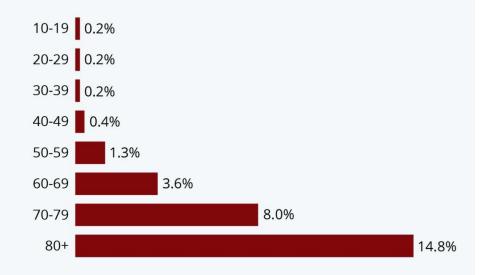


CORONAVIRUS CASCADE

One estimate suggests that more than 200,000 coronavirus-related journal articles and preprints had been published by early December.

onature

Outline


- Kids and COVID-19 in general
- COVID-19 and schools
- Situation in BC
- Q & A

Children (in general) do well with the acute infection

First Data – Feb 2020

Study: Elderly Most At Risk From The Coronavirus

COVID-19 fatality rate by age (as of February 11, 2020)

n=44,672 confirmed COVID-19 cases in Mainland China Source: Chinese Centre for Disease Control and Prevention

Appendix Table 6B: Child Mortality Data Available on 4/22/21*

COVID-19-Associated Deaths and Children

Location	Age range	Cumulative child deaths	Cumulative total deaths (all ages)	Percent children of total deaths	Percent of child cases resulting in death^
<u>Mississippi</u>	0-17	3	7,173	0.04%	0.01%
<u>Missouri</u>	0-17	4	8,691	0.05%	0.01%
<u>Nebraska</u>	0-19	4	2,232	0.18%	0.01%
<u>Nevada</u>	0-19	5	5,388	0.10%	0.01%
New Hampshire	0-19	0	1,273	0.00%	0.00%
<u>New Jersey</u>	0-17	7	22,660	0.03%	0.01%
North Carolina	0-17	3	12,480	0.02%	0.00%
<u>North Dakota</u>	0-19	1	1,484	0.07%	0.01%
NYC	0-17	23	27,130	0.08%	0.03%
<u>Ohio</u> ~	0-19	7	19,033	0.04%	0.00%
<u>Oklahoma</u>	0-17	2	6,716	0.03%	0.00%
<u>Oregon</u>	0-19	2	2,466	0.08%	0.01%
Pennsylvania	0-19	9	25,827	0.03%	0.01%
<u>Puerto Rico</u>	0-19	3	2,238	0.13%	0.02%
South Dakota	0-19	0	1,954	0.00%	0.00%
Tennessee	0-20	12	12,111	0.10%	0.01%
Texas [#]	0-19	51	48,508	0.11%	
<u>Vermont</u>	0-19	0	243	0.00%	0.00%
<u>Virginia</u> □	0-19	4	10,653	0.04%	0.00%
<u>Washington</u>	0-19	7	5,422	0.13%	0.01%
<u>Wisconsin</u>	0-19	3	7,430	0.04%	0.00%
Wyoming	0-18	0	705	0.00%	0.00%

https://services.aap.org/en/pages/2019-novel-coronavirus-covid-19-infections

New "variants" data

Article

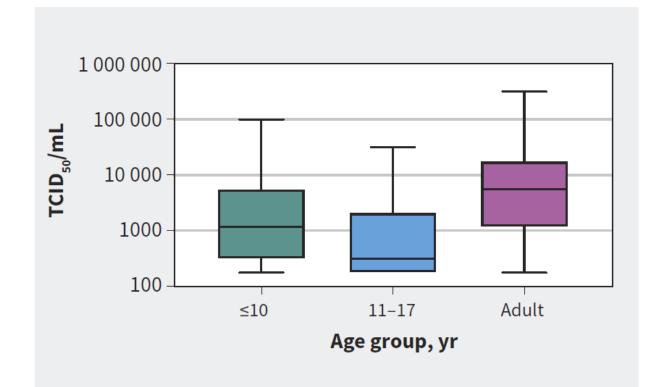
Table 1 | Absolute 28-day mortality risk for B.1.1.7

Sex	Age	Baseline	Mortality risk for B.1.1.7									
	(years)	mortality	SGTF for complete cases	p _{voc} IPW								
Female	1–34	0.00069%	0.0011% (0.00096– 0.0012%)	0.0011% (0.00097– 0.0012%)								
	35–54	0.033%	0.050% (0.045– 0.056%)	0.052% (0.046– 0.059%)								
	55-69	0.18%	0.28% (0.25–0.31%)	0.29% (0.26–0.33%)								
	70-84	2.9%	4.4% (4.0-4.9%)	4.6% (4.0–5.1%)								
	85 and older	13%	19% (17–21%)	20% (18–22%)								
Male	1–34	0.0031%	0.0047% (0.0042– 0.0052%)	0.0049% (0.0043– 0.0055%)								
	35-54	0.064%	0.099% (0.089–0.11%)	0.10% (0.090-0.12%)								
	55-69	0.56%	0.86% (0.77–0.95%)	0.89% (0.78–1.0%)								
	70-84	4.7%	7.2% (6.4–7.9%)	7.4% (6.6–8.3%)								
	85 and older	17%	25% (23–27%)	26% (23–29%)								

Nature. 2021 Mar 15. doi: 10.1038/s41586-021-03426-1.

Children (in general) are less likely to get infected when exposed to SARS-CoV-2 contacts

Figure 2. Pooled Estimate of Odds of Being an Infected Contact Among Children and Adolescents Compared With Adults for All Contact-Tracing Studies


	Child		Adult		OR	Reduced odds Increased odds of secondary of secondary infection among infection amon	g Weight,
Source	Positive	Negative	Positive	Negative	(95% CI)	those <20 y those <20 y	%
Wang et al, ¹⁸ 2020	2	8	130	49	0.09 (0.02-0.46)		4.02
van der Hoek et al, ²⁸ 2020	0	43	55	611	0.13 (0.01-2.09)		1.80
Li et al, ¹⁶ 2020	4	96	60	232	0.16 (0.06-0.46)		6.00
Wang et al, ²⁰ 2020	13	23	64	28	0.25 (0.11-0.56)		7.03
Cheng et al, ¹⁷ 2020	1	280	21	2265	0.39 (0.05-2.87)		2.96
Rosenberg et al, ²⁵ 2020	42	114	88	94	0.39 (0.25-0.62)		8.59
Dattner et al, ²¹ 2020	441	1297	432	546	0.43 (0.36-0.51)		9.45
Mizumoto et al, ¹⁹ 2020	10	165	284	2037	0.43 (0.23-0.83)		7.77
Zhang et al, ¹⁰ 2020	47	709	606	5831	0.64 (0.47-0.87)		9.12
Yousaf et al, ²⁶ 2020	14	55	33	93	0.72 (0.35-1.46)		7.51
Chaw et al, ²⁷ 2020	12	418	39	1278	0.94 (0.49-1.81)		7.75
Laxminarayan et al, ²³ 2020	428	5647	2800	39756	1.08 (0.97-1.20)	È.	9.53
Liu et al, ²⁴ 2020	93	1774	421	9292	1.16 (0.92-1.46)		9.32
Park et al, ¹² 2020	50	644	2119	56260	2.06 (1.54-2.76)		9.16
Overall					0.56 (0.37-0.85)		
Heterogeneity: $\tau^2 = 0.47$; $I^2 = 94$	64%; H ² = 18.	64			0.01	0.1 1 10 OR (95% CI)	
					1.4	NAA Dadiate 2024 Eak 1.47E/2	

JAMA Pediatr. 2021 Feb 1;175(2):143-156.

But aren't children excellent at picking up respiratory viruses?

Children have lower amounts of "viable" virus

Figure 2: Tissue culture infective dose 50% (TCID₅₀/mL) by age group. Adult samples had significantly higher TCID₅₀/mL (5620, IQR 1171–17800) than children aged 11–17 years (316, interquartile range [IQR] 178–2125, p < 0.001), but were not significantly higher than children aged \leq 10 years (1171, IQR 316 to 5620, p = 0.1).

Outline

- Kids and COVID-19 in general
- COVID-19 and schools
- Situation in BC
- Q & A

Several Contact Tracing studies from infectious cases in schools

- Australia 1.2% attack rate amongst contacts (n=1448)
 - among students and staff with face-to-face contact with a positive case for at least 15 minutes, or those who shared closed indoor space for at least 40 minutes (e.g. same class)
- Ireland no secondary cases
- Singapore no secondary cases

Lancet Child Adolesc Health. 2020 Nov;4(11):807-816. Euro Surveill. 2020;25(21):2000903. Clin Infect Dis. 2021 Mar 15;72(6):1055-1058

What about home transmission vs school transmission?

- Wisconsin 5533 staff/student cases
 - 3.7% associated with transmission in school
- Norway 234 school based contacts of school based cases
 - No secondary cases in schools identified

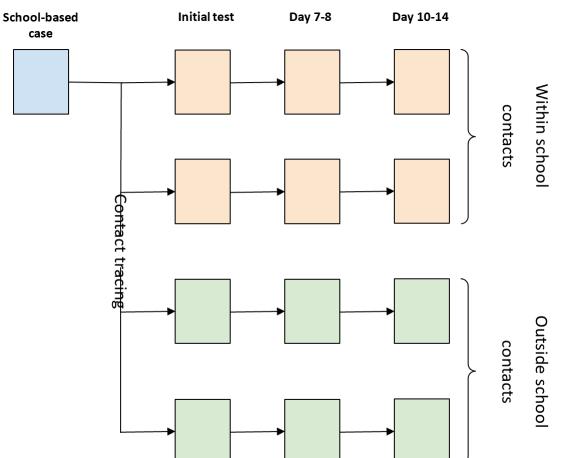
MMWR Morb Mortal Wkly Rep. 2021 Jan 29;70(4):136-140. Euro Surveill. 2021;26(1):pii=2002011.

Tracking COVID-19 For Safer Schools

A study to understand COVID-19 transmission in schools to help make *schools safer!*

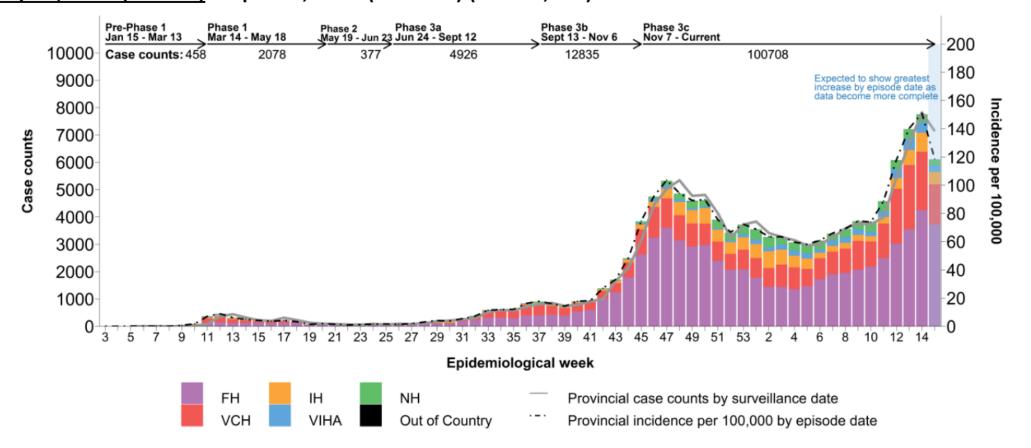
Research study conducted by UBC, BC Children Hospital Research Institute and The COVID-19 Immunity Task Force **Pascal Lavoie, Louise Masse and David Goldfarb**

What is the COVID-19 exposure risk among the VSB classroom staff in direct contact with students

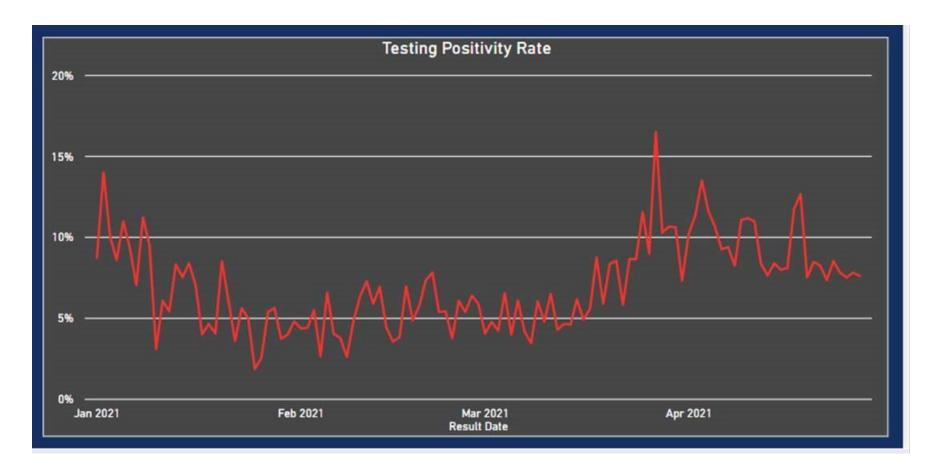

2) Impact of the COVID-19 pandemic on VSB staff members' mental health and well-being?

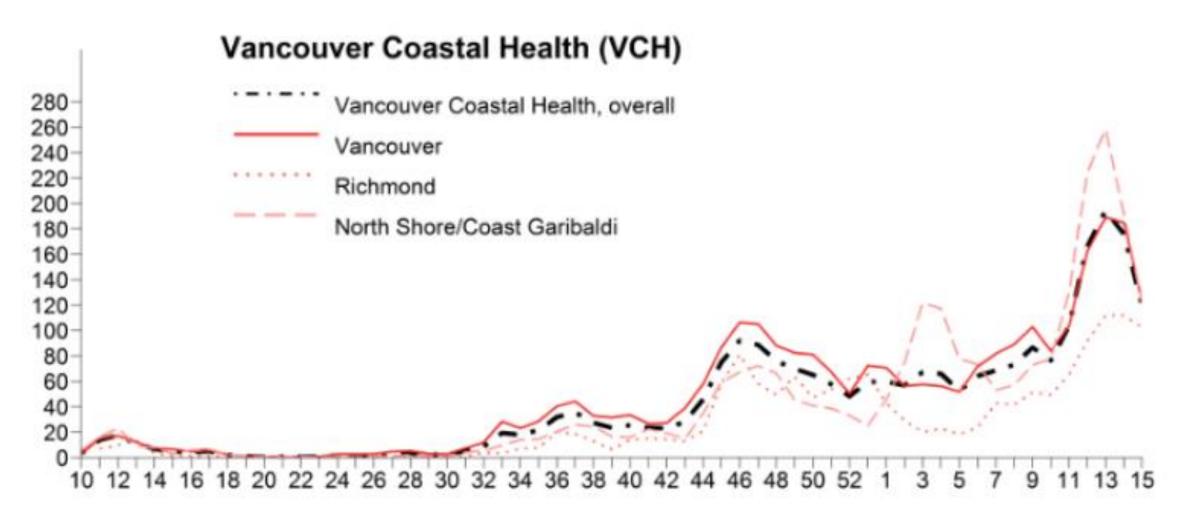
What Does The Study Involves?

- Voluntary serology testing for any VSB Staff (blood sample) + COVID-19 / mental well-being / vaccine perceptions questionnaire
 - 1500+ classroom staff (direct contact with students)
 - 500 staff with no direct contact with students (control group)
- Enhanced viral testing of close contacts of student who tests positive for COVID-19
 - Additional at home testing kids, and expanded contact tracing

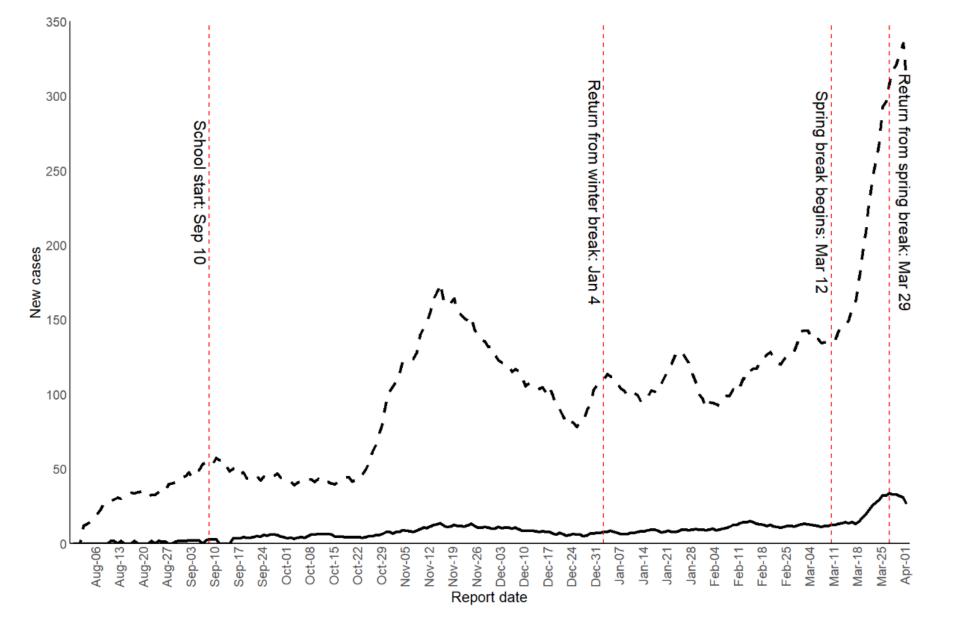

Out of school transmission vs school transmission?

Outline


- Kids and COVID-19 in general
- COVID-19 and schools
- Situation in BC
- Q & A

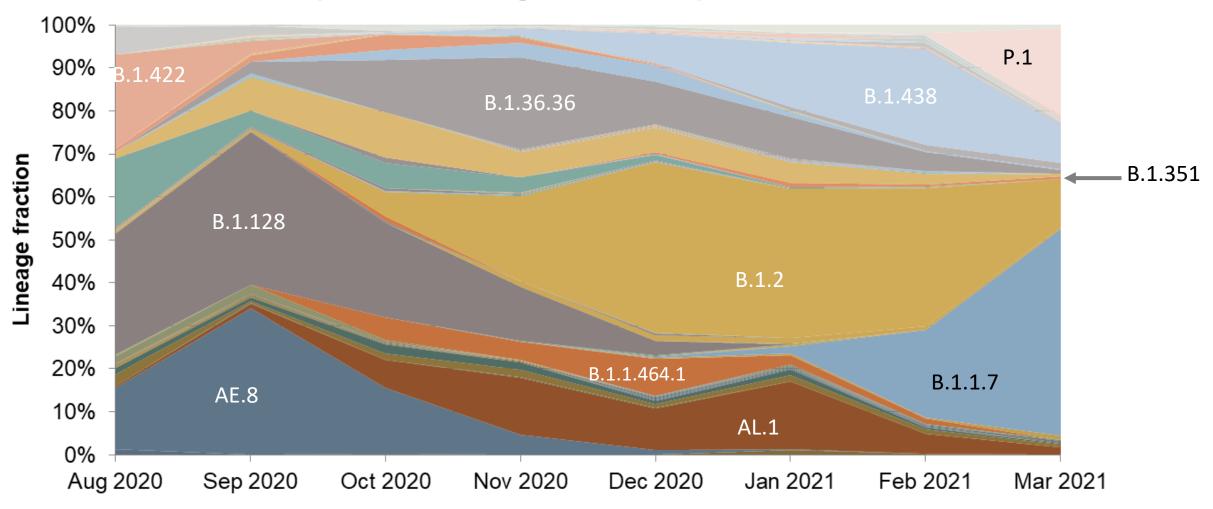

January 15, 2020 (week 3) – April 17, 2021 (week 15) (N= 121,382)

BCCDC COVID-19 Situational Report Week 15


Positivity Rate in Children < 10 yrs Jan to end April, 2021 – Province wide

Jan 1-31 2021: 604/9787 = 6.2% Apr 1-27 2021: 1797/19,703 = 9.1%

BCCDC COVID-19 Situational Report Week 15



VCH Schools situation – similar to other jurisdictions

- If there is lots of transmission in the community, there will be increased cases detected in students and staff
- over 90% of student and staff cases do not lead to any transmission whatsoever, and when there is transmission it's generally limited to 1 or 2 other people

Sequenced lineage fractions per month

Distributions reflect significant sampling biases due to WGS for outbreaks, travel vs unbiased surveillance

BCCDC Public Health Laboratory

I have heard that new Variants of Concern (VOCs) are more transmissible. What does this mean for students and staff in schools and possible transmissions there?

While the VOCs may be 30-50% more transmissible than non-VOCs, this is a relative risk. This means that the true size of the risk depends on the size of the risk of transmission to begin with. For instance, if risk of transmission changed from 2% to 3% this would be a 50% increase in relative risk. But if risk of transmission changed from 20% to 30% this would also be a 50% increase in relative risk. Absolute risk is the size of your own risk. The risk of transmission of COVID-19 varies between settings and is very low in school settings.

Australia study, 1.2% of those exposed (12 in 1000 people) tested positive for COVID-19. So if a VOC was 30% more transmissible (relative risk), then we could expect that 1.7% (17 in 1000) of those exposed could test positive, an extra 5 per 1000 (absolute risk).

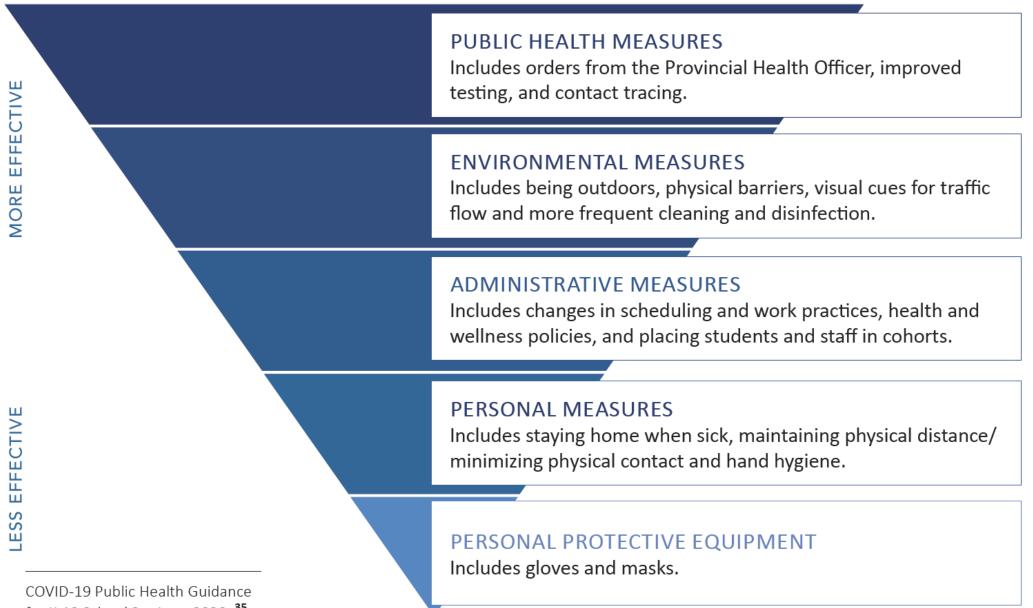
1000 People Exposed

																	200														
٢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٢	٢	0	0	٢	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	٢	٢	0	0	٢	0	0	0	0	0	0	٢	0	0	0	0	0	0	0
٢	0	0	0	0	0	0	0	0	0	0	0	٢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
٢	0	0	0	0	0	0	0	0	0	0	0	٢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
٢	0	0	0	0	0	0	0	0	0	٢	٢	0	0	0	٢	0	0	0	0	0	0	0	0	٢	0	0	0	0	0	0	0
٢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
٢	0	0	0	0	0	0	0	0	0	0	0	٢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	٢	0	0	0	٢	0	0	٢	٢	٢	٢	0	0	0	0	0	0	0	٢	٢	٢	0	0	0	0	0
٢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
٢	0	0	0	0	0	0	٢	0	0	0	0	0	0	0	0	0	0	٢	0	٢	٢	٢	0	٢	٢	٢	٢	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٢	0	0	0	0	0	0	0	0	0
٢	٢	0	٢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
٢	0	0	0	0	0	0	0	0	0	0	0	٢	0	0	0	0	0	0	0	0	0	0	٢	٢	٢	0	0	0	0	0	0
٢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٢	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
٢	0	0	0	0	0	0	0	0	0	0	0	٢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٢	0	0	0	0	0	0
9	٢	0	٢	0	0	0	0	0	0	0	٢	0	0	٢	0	0	0	0	0	0	0	0	٢	٢	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	٢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
٢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٢	٢	0	٢	٢	٢	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٢	0	0	0	0	0	0	0	0	0
٢	0	0	0	0	0	0	0	0	0	0	0	0	٢	0	0	0	0	0	0	0	0	٢	0	۲	٢	٢	0	0	0	0	0
٢	٢	٢	0	0	0	0	0	0	0	0	0	0	0	0	٢	0	0	0	0	0	0	0	0	٢	0	٢	0	0	0	0	0
٢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
٢	0	0	0	0	0	0	0	0	0	0	٢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	٢	0	0	0	0	0	0	0	0	٢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0																								

VoC / Vol Profiles – It's getting complicated!

First								South				
Identified	US Ca	lifornia	India	Nigeria	a / Europe	UK	Brazil	Africa	Philippines	Brazil		
	B.1.427 B.1.429		B.1.617	B.1.1.318	B.1.525	B.1.1.7	P.1	B.1.351	P.3	P.2	R.1	R.2
				ORF1a-	ORF1a-	ORF1a-	ORF1a-	ORF1a-				
	S-L452R	S-S13I	S-T95I	SGFdel	SGFdel	SGFdel	SGFdel	SGFdel	S-141-143del	S-E484K	S-W152L	S-E484K
	S-D614G	S-W152C	S-E154K	S-T95I	S-A67V	S-69/70del	S-L18F	S-K417N	S-E484K	S-D614G	S-E484K	S-D614G
		S-L452R	S-L452R	S-144del	S-69/70del	S-144del	S-T20N	S-E484K	S-N501Y	S-V1176F	S-D614G	S-Q677H
		S-D614G	S-E484Q	S-E484K	S-144del	S-N501Y	S-P26S	S-N501Y	S-D614G		S-G769V	S-T732S
			S-D614G	S-D614G	S-E484K	S-A570D	S-D138Y	S-D614G	S-P681H			S-E1202Q
			S-P681R	S-P681H	S-D614G	S-D614G	S-R190S	S-A701V	S-E1092K			
			S-Q1071H	S-D796H	S-Q677H	S-P681H	S-K417T		S-H1101Y			
					S-F888L	S-T716I	S-E484K		S-V1176F			
						S-S982A	S-N501Y					
						S-D1118H	S-D614G					
							S-H655Y					
							S-T1027I					
							S-V1176F					

Convergent evolution across viral lineages at certain positions – VoC designation requires both epidemiological linkages and sufficient statistical power understand their significance!


School situation...

VS.

THE HIERARCHY FOR INFECTION PREVENTION AND EXPOSURE CONTROL MEASURES FOR COMMUNICABLE DISEASE

for K-12 School Settings, 2020. ³⁵

Outline

- Kids and COVID-19 in general
- COVID-19 and schools
- Situation in BC
- Q & A